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Abstract. The constraint that extended molecules such as polymers cannot pass through 
each other is formulated in terms of a topological invariant. A simple model of the motion 
of a labelled loop entangled in a uniform background of amorphous loops is studied. A 
dynamical weighting factor is found which effectively removes configurational changes 
that would lead to the labelled loop passing through the strands of the background material. 
A perturbation treatment of this weighting factor is presented which describes the effects 
of the entanglements in terms of random environmental forces possessing considerable 
space and time correlations. A detailed analytic calculation is presented for the case of a 
labelled molecule with a rigid-ring configuration. This calculation illustrates the limited 
va!idity of perturbation theory in dealing with entanglements and suggests the existence 
of a transition in time to a random ‘tube’-like behaviour, where the centre-of-mass motion 
of the ring depends on the time as instead of the usual diffusive t ” * .  The origin of 
this behaviour can be located in the long-time persistence of the bond vector correlation 
function of the labelled ring. 

1. Introduction 

The simple intuitive observation that extended molecules such as polymers cannot 
pass directly through each other has long been recognised as the dominant feature 
determining the dynamical behaviour of these systems in the concentrated or liquid 
state. For polymer molecules either in the form of rigid rods (Ode11 et al 1984) or 
as flexible chains (Graessley 1974), the most immediate observation is the dramatic 
increase in the viscosity as a function of concentration and molecular weight. In 
addition the polymeric fluid will show considerable elasticity and be able to support 
a stress over many decades of time. These effects and the general lack of mobility in 
dense systems are commonly referred to in the literature as being due to entanglements. 
This notion is at best phenomenological and has been freely adapted from the theory 
of cross-linked rubbers in which entanglements are considered as temporary crosslinks. 

In  order to understand the viscoelasticity of extended molecular structures one 
needs a well defined model of entanglements. Edwards, in a series of papers (Edwards 
1967a, b, 1968, Edwards and Deam 1976) chiefly concerned with the equilibrium (static) 
properties of rubber networks, has introduced a topological description of entangle- 
ments in terms of winding numbers. The application of these ideas to dynamical 
properties has been very difficult to implement (Edwards and Miller 1976) and has 
necessitated a great deal of approximation. The consequence of this has been that the 
original topological content of the theory has given way to the expediency of a ‘tube’ 
in which the entangled polymer molecules are trapped. This model was combined by 
Edwards and Doi (1978a, b, c, 1979) with the reptation idea of de Gennes (1971) to 
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produce one of the most popular and successful theories to account for the dynamical 
effects of entanglements. 

The basic tube-reptation model has been well described in the literature and does 
not require any further elaboration here. The review by Graessely (1982) gives a full 
account of this model. We would simply emphasise here that despite the many 
illustrations in the literature of the tube as an actual tube formed by strands of 
surrounding material, it is in fact only meant to represent the topological rather than 
mechanical aspects of entanglements. This is emphasised by values for the tube radius 
which are considerably in excess of the interchain distances (Graessley 1982). Further- 
more, in order to account for experimental observations (Graessley 1982) the tube 
radius must scale as ( concentration)-’’2 instead of the geometrical factor (concentra- 
t i ~ n ) ” ~ .  The mechanistic picture of a writhing polymer trapped in a tube is conceptually 
easy to grasp and has come to dominate the field of entanglement dynamics: however, 
in order to accommodate the tube model to detailed experimental observations, 
modifications have had to be made. These build on and reinforce the mechanistic 
picture at the further expense of the original topological description. For example, 
Graessley in his recent review has described an additional process which he calls ‘tube 
leakage’ which pictures the tube as a mesh through which local loops of polymer can 
bulge out and withdraw in a dynamic manner. 

In this paper we wish to return to and analyse the intrinsically topological character 
of entanglements without the aid of any tube model. To illustrate our approach consider 
the two entangled situations shown in figures l ( a )  and (b).  Whilst they are similar in 
a configurational sense, they are nevertheless topologically distinct in that the configur- 
ation depicted in figure l ( a )  could never evolve into that shown in l ( b )  and vice versa 
without one strand cutting through the other. In other words, the configurational phase 
space is partitioned up into mutually inaccessible trajectories, each labelled by an 
appropriate set of topological invariants. For a given initial state, formed at the 
fabrication of the system, configurational changes can only occur along trajectories 
labelled by the initial conditions. The restricted phase space available to configurational 
changes will inevitably slow down the rate of any dynamical process and the existence 
of topological invariants will impart a memory to such changes. 

In this paper we want to present in detail the dynamical effects specifically arising 
from the conservation of the topology. Our approach does not locate the entanglements 
at any point on the molecule, like crosslinks, or in any region of space, like the tube; 

lul n ibl A 

Figure 1. Entangled loops which are configurationally similar but topologically distinct. 
The configuration in ( a )  could never evolve into that shown in ( b )  without one strand 
cutting through the other. 
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instead they are treated as global properties of the total configuration. In 0 7 we will 
briefly present evidence that this topological approach is able to reproduce in an 
oblique manner some features of the tube model. However, the main thrust of this 
paper is to establish a formalism for dealing with entanglements in arbitrary dynamical 
situations. It is an extension of earlier work (Brereton and Shah 1980) on the static 
properties of entanglements, where again we endeavoured to keep the topological 
aspects of the problem intact. 

2. A model of entanglements 

In order to model the essential features of an entangled situation we consider a 
macroscopic box filled to a uniform density with long continuous loops of material. 
Into this spaghetti-like medium we introduce and entangle a labelled closed-loop 
configuration whose dynamical properties in the presence of the entangling background 
will be our main concern. The model is shown schematically in figure 2 .  Our object 
in this paper is to develop a formalism whereby we can constrain the dynamical 
development of the labelled loop so that it does not pass through any of the strands 
of the background material. The background is simply to provide the entanglement 
constraints after which it will be averaged over and play no further role in our 
considerations. Formulae describing the entanglement-restricted configurational 
motion of the labelled loop are obtained by a perturbation calculation in 0 5. By 
choosing a simple geometrical shape for the labelled loop such as a rigid ring we can 
illustrate the physical content of our formalism by explicit analytic calculation. This 
is done in § 6 where we consider the influence of entanglements on the centre-of-mass 
and orientational motion of the ring. This calculation makes clear what the controlling 
features associated with entanglements are and illustrates the limited applicability of 
perturbation theory. 

\ 
\ 

, I 

Background loops, C, 

Figure 2. The labelled loop C, of finite length is entangled in a uniform background of 
very long amorphous loops C,. Each entanglement is described in terms of a winding 
number mp which is to be conserved in any dynamical configurational changes. The paper 
deals with the resulting restricted motion of the labelled loop in this background. 
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To describe the number of times one configuration is wrapped round another we 
use the Gauss winding number formula. This has the form of a double line integral 
taken round the two configurations and can be written as 

ra and rP are the position vectors to the two curves which at a time t are in configurations 
described by Ca(t) and Cp(t ) .  One of these configurations, say the C,, will be used 
to describe the spaghetti background, whilst the other, C,, will represent the labelled 
configuration of interest. It is more convenient to describe the background material 
in terms of a continuous vector field A(R) defined at every space point R in the 
macroscopic box. This vector field is defined from (2.1) as 

1 
A(R, t )  =- dr, XV- 

I*, -RI 

so that the winding number formula can then be written as a line integral taken round 
the labelled configuration C, : 

The background configuration C, acts as a vector source u(R, t )  for this A field 
through the relation 

u(R, t )  = curl A(R, t )  

(2.4) 

Thus u(R, t )  is zero everywhere except at the actual location of the matrix material 
where it has the direction of the tangent vector of the thread of material at that point. 

The integral (2.3) takes integer values (the winding numbers m )  which, while being 
topological invariants, are not very good discriminators between different topological 
situations. However, in dynamical situations the absolute value of m is not so impor- 
tant; what really matters is that m should remain constant during configurational 
changes, since if one curve crosses through the other the value of the integral I( C,, C,) 
changes by * l ,  Consequently if we impose the constraint that 

I { C a ( t ) ,  Cp( t ) )=  m (a constant) (2.5) 

at all times t ,  then we can achieve the desired constraint that prevents one curve from 
passing through the other. Edwards and Miller (1976) has already shown that the 
equation d I / d t  = 0 expresses the fact that the relative velocities of the two curves 
perpendicular to the plane formed by the tangent vectors to the curves where they 
touch, vanish. This forces the curves to slide past each other when they come into 
contact. 

In the next section we will show how this constraint leads to a dynamical statistical 
weighting factor for entanglements. This will be used to appropriately bias the 
sequences of configurational changes of the labelled loop that conserve the winding 
number. 
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3. A dynamical weighting factor for entanglements 

We will formulate the constraint that the winding number should be conserved and 
hence ensure the inability of loops to pass through each other in terms more general 
than are strictly necessary for our problem. This will enable us to develop a more 
physical, interpretation of the formalism. In particular we will constrain the winding 
number integral at each time t to take on a definite value m ( t ) .  Only at a later stage 
do we insist that m (  t )  = m (a constant). We explicitly accomplish this by incorporating 
into all our statistical calculations the following product of topology-conserving delta 
functions: 

n s(l{c,(t), Cp( t ) } - -m( t ) ) .  (3.1) 
1 

We will treat the time as a discrete variable so that our theoretical manipulations are 
well defined; later there is no difficulty in taking the continuum limit. 

The behaviour of the background material is not our concern in this paper and it 
was only introduced so that entanglements could be defined. We will now average 
over the configurations of this material and convert the product of topology-conserving 
delta functions into a single statistical weighting factor: 

(3.2) 

This represents the probability that a sequence of configurations { C,} = C( t l ) ,  C( f 2 ) ,  . . . 
of the labelled molecule will be constrained to the sequence of topologies described 
by the sequence of winding numbers { m }  = m (  t , ) ,  m( f 2 ) ,  . . . respectively. 

To see how this averaging can be done we return to the description (2.4) of the 
background configurations by the source vector u(R,  t )  = curl A(R,  t )  and treat u(R,  t )  
and hence the field A(R, t )  as a field of Gaussian random variables. That is, the 
statistical properties of the background are to be completely described by the corre1atio.n 
function 

r ( R  - R', t - t ' )  = ( A ( R ,  t ) A ( R ' ,  t ) ) { = , }  (3.3) 

in which case it is relatively easy to show (the appendix) that 

=(27rdet M-')-';'exp( -iz m(t)M;!{C,}m(t') 
11 '  

(3.4) 

where M;?{C,} is the inverse 'matrix' of M{C}, given by 

Mt14CU} = p d r  - r( r - r ' ,  t - t ' )  - dr'. (3.5) 
C*(t) 

We can interpret the matrix Ml18{ C,} in the following way. Imagine that we allow 
the labelled loop to behave like a phantom coil so that it can freely wander and cut 
through the strands of the background material. At any moment of time it will have 
a winding number m( t )  which will fluctuate as the coil passes through the background 
strands. The distribution of these phantom coil winding numbers taken over all 
background configurations will be given by (3.4) and so we can identify the matrix 
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Mrf,{ C }  with the correlation function of winding numbers appropriate to a phantom coil 

(4  t )  m( t'))phantom coil = M f t 4  CQ 1. (3.6) 

We have already shown in our work on the static properties of entanglements 
(Brereton and Shah 1982) that for a frozen, randomly oriented loop of background 
material the correlation function (3.3) is given by 

p12 1 RR 
2 4 ~  R (  R ) r ( R ,  t ) = - -  l + ~  (3.7) 

where p is the density and 1 is the step length. In this case the function M,,.{C,} is 
given by 

The first term of this expression describes a geometrical relationship between the two 
configurations of the same loop at different times t and t' which is essentially the 
mutual inductance. Thus for a phantom coil wandering in a frozen configuration of 
randomly oriented strands the loss of winding number correlation is directly measured 
by the geometrical property described by the mutual inductance formula (3.8). To 
transform our phantom coil into a real impenetrable loop we finally impose the 
condition 

m ( t )  = m for all t 

so that the statistical weighting factor describing the effect of entanglements on an 
impenetrable loop becomes 

Nc 

a = '  
p ( { C , } ;  {ma}) = n ( 2 r  det M-')-'I2 exp( -?E 11' Mi?{CQ)). (3.9) 

In this formula we have also allowed for the additional possibility that the labelled 
loop C, can entangle independently with Nc other background strands. Each set of 
entanglements is described by the winding number mp and the number of background 
loops Nc will remain a parameter of our model. 

The actual distribution of winding number { m p }  found in any physical situation 
will depend on the details of fabrication. Loops formed outside of the box containing 
the background material and then introduced will have m = 0, whereas for loops formed 
from open linear chains already integrated in the matrix we can expect the ensemble 
average m2 to be the same as the phantom coil result: 

- 
- 
m2 = ( m 2 ( t ) )  = (Mt,{G}){cmp (3.10) 

The case t = t' governs the influence of entanglements on the static properties of 
configurations (Brereton and Shah 1982). In particular we have shown (Brereton and 
Filbrandt 1984) that the form (3.8) for Mf,{ C} can account for the deviations in rubber 
elasticity theory that are normally described by the phenomenological theory of Mooney 
and Rivlin. The dramatic and specifically dynamic effects of entanglements occur at 
long time differences between f and t ' .  We can see that in our formalism they are due 
to the increasing difference between the functional form of m (a constant) and Mi? .  
Since a phantom coil retains no memory of its initial configuration or topological state 
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we have M,,. + 0 as It - t'l + CO and so the exponential factor of the distribution function 
(3.9) behaves like 

(3.11) 

This then effectively suppresses such sequences of phantom coil configurations and 
the average 2 of any dynamic configuration property X{C,}  of the labelled loop in 
the presence of entanglements is calculated according to 

x = (X{Cm)P({Cm}; " { C O }  (3.12) 

where the averaging ( U  e )  is performed over all dynamical configurations possible in 
the absence of entanglements. 

We now have the central problem of implementing this calculation for a variety of 
dynamical systems. In the next section we outline a general approach which develops 
the idea of entanglements as introducing, both spatially and temporally, correlations 
into the random environmental forces invariably present in such systems. 

4. Entanglements and random forces 

We will assume that in the absence of entanglements the motion of the labelled loop 
is generated by the linear action of random environmental forces ( 6 )  acting at all 
points on the loop. Consequently the coordinate ri( t )  of any point i on the loop at a 
time t can be expressed as a linear history of all the random force events that the 
whole loop has been subjected to. This takes the form 

The function G,(t - t ' )  depends only on the specific model chosen to describe the 
dynamics of the labelled loop. The dynamical average of any configurational property 
is then obtained by averaging over all random force histories (6,). As a particular 
example we can consider the correlation function ( r k (  t )  - r,( t ' ) )  which in the presence 
of entanglements is given using (4.1) and (3.12) by 

( r k ( f )  * r d f ' ) ) = z  I[ dti dt, Gki(f-fl)Grj(t-t2)(5i(fl) . f j ( f 2 ) P ( { C a } ;  m ) ) ( ~ ) .  

1 

(4.2) 
ij 

--CO 

Since there is a linear relation (4.1) between the configuration variables { r }  and 
the random force variables i f } ,  we can replace one set by the other according to 

{ r }  + (51 

P ( { C m } ;  m ) +  P(I5); m )  (4.3) 

and 

in which case we can regard P ( f } ;  m )  as the probability distribution function that a 
certain history { f }  of random force events does not lead to a violation of the topology. 
That is, they do not cause the labelled loop C, to cross a strand of background material. 
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The dynamical effects of entanglements are then completely determined by the correla- 
tion function of the random forces in the presence of the entanglement constraint: 

Dg(t1- t 2 )  =(5i(tl) Sj(t2)P({O; m)) {c } .  (4.4) 

The averaging represented by (. a )  is done on the assumption that in the absence of 
entanglements the random forces are both fast and short ranged so that 

(5i(tl) * 5jt t2))(*)  =6Dofjijfj(tl - t2 ) .  (4.5) 

We will show in the following sections that the introduction of the probability 
distribution function P ( ( 5 ) ;  m )  in (4.4) leads to large arc lengths and extended time 
correlations in the fluctuation function Dij( t - r’). In this manner our formalism can 
begin to mimic a tube constraint. The additional correlations introduced by the 
entanglements are reflected in the configurational properties of the labelled loop C,  
by being convoluted with the reponse functions Gij( t - t ’ ) .  Thus for example we have 
from (4.2) that 

The random force correlation function Dij( t - t ’ )  is the single most important quantity 
through which the dynamical effects of entanglements can be calculated. However, 
there are substantial difficulties in dealing with the precise form of P ( { t } ;  m) and in 
the next section we approach this problem in a perturbative manner. 

5. Perturbation calculation 

If we formally couple an external field J,(  t )  to the random forces and define a generating 
function Z { J )  as 

then the random force correlation function in the presence of entanglements is given 
by 

(Si([*) * 5j(f2)) = Dv(t1- t 2 )  

To do the averaging over the random forces (6) we note that the statistics given 
by (4.5) are equivalent to treating the (5) as Gaussian random variables, so that 

where 

(5.3) 
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and X is a norma1isatio.n factor. By a change of variable 

and using (3.9) for the entanglement weighting factor, the generating function Z { J }  
can be expressed as 

DO exp[( -$n2 Z,,, M;!(q - f D o J ) ]  Z { J }  = exp 1 J: ( t ) -  
6 ) 5 d{77’P{77’ [27r det M-’(q - fDoJ) ] ’”  ’ ( i , r  

( 5 . 5 )  

The functional integrals over the { f }  cannot be done in any analytic manner and 
in this preliminary study we use a perturbative approach. This consists of replacing 
the phantom coil winding number correlation function Mttf{ C,} by an unperturbed 
average value. In particular we set 

and formally 
be written as 

W f J J }  = (MfJq -fW))(,) (5.6) 

find the inverse matrix W,?, so that with this approximation Z { J }  can 

Do exp( - im2  Z,,. W;!{J}) Z { J }  = exp 1 ~ f (  2)- 
( i t  6 )  (2.n det W-1)1’2 ’ 

(5.7) 

The differentiations with respect to the Ji(  t l )  and J , (  t z )  can now be done and the result 
written as 

Dij(tI3 t 2 )  = DoGijS(tl- t z )  

where W and d2W/dJ .  d J  are evaluated at { J }  = 0. The result is still formal in that 
we have not specified the inverse matrix W;’. This can be done using a Fourier 
transform, since in the limit { J }  = 0 we have time translational invariance and we can 
write 

( 5 . 9 )  w,? _= w-l( t - t’) 

and 

(5.10) 

Under these circumstances a Fourier transform will ‘diagonalise’ the matrix W,,.. We 
define 

x 

w(w) = [-= d7 w(7) exp(iw7) (5.11) 

so that 

W-’(w) = l /W(w) .  (5.12) 
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Finally the result ( 5 . 8 )  for the random force correlation function in the presence 
of entanglements can be written in terms of Fourier transform variables as 

This is an explicit expression which can be evaluated once the phantom coil winding 
number correlation function M,,.(f} has been specified and its average over the ( 5 )  
evaluated in the presence of an external field { J } .  

We emphasise that this result has been obtained in a perturbative manner and it 
is necessary to obtain some indication of its range of applicability. We do this in the 
next section by presenting an explicit calculation based on the result (5.13) for the 
case where the labelled coil is described by a particularly simple geometry. 

6. Model example: an entangled rigid ring 

The physical content of the formalism developed in previous sections can be readily 
illustrated by considering the situation where the labelled loop entangled with the 
background material has the configuration of a rigid ring. We consider the centre of 
mass and orien’tation of the ring as the dynamical variables whose time dependence 
will reflect the influence of the entanglements. This choice of a simple geometry enables 
us to explicitly calculate the functions appearing in (5.13) and in particular the ‘mutual 
inductance’ M( t ,  t ’ )  Without loss of generality we can set t ’ =  0 and write 

M,,,(C)=M(t; C ) =  dsr(s,  t )  . I ’ ( r - r ‘ )  ar(s’0).  (6.1) 

The term r( r - r ’ )  is determined by the nature of the background material and is 
expressed by (3.3) in terms of a vector field correlation function. For the case where 
the background loops are static with tangent vectors that are randomly orientated r 
is explicitly given by (3.7); however, in anticipation of the averaging we will be doing 
we take the simpler form 

where p and I are the number density and step length of the segments forming the 
background strand. Thus we have to evaluate 

(6.3) 

In figure 3 we show the rigid ring in two arbitrary configurations at the times t 
and t’ = 0. The mutual inductance between these rings can be written down exactly as 

7 n* 

where 



Dynamical eflects of entanglements 2043 

c 
L; 

Figure 3. The geometry used to describe the configuration of a rigid ring at two arbitrary 
times. 

and a is the radius of the ring, s and s '  are points on the circumferences and R ( t )  is 
the distance between the centres of mass of the rings. e ( t )  is the angle between the 
two normals to the planes of the rings. The integrals in (6.4) can be evaluated in terms 
of hypergeometric functions ; however, for long times when the distance between the 
rings is much larger than the size a of the ring we find the approximate result 

1 - cos2 e( t )  
( R'( r )  + 2a2)3/2' 

a4  (6.5) 

In this result both e ( t )  and R ( t )  are dynamic variables which we will assume in the 
absence of entanglements to undergo Brownian motion. The time evolution can be 
described by the following Langevin equations 

gR and 5 0  are treated as Gaussian random variables with correlation in the absence 
of entanglements given by 

For a rigid ring and are not independent but related by 

D = 0: = ( 2 / 3 a 2 ) D i .  (6.8) 

To apply the perturbative approach developed in the last section we need to average 
over the whole history of random forces acting on the loop in the presence of generator 
terms. Thus we evaluate 
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where the averaging (. . .) in the presence of the generating terms is done by replacing 

Using the expression (6.5) and some factorisation of Gaussian random variables, we 
have 

(6.10) 

From the Langevin equations the average values of R2(  t )  and cos e( t )  can be found as 

( R 2 ( t ) ) , ,  = 6 D ~ t + b D i  J R ( ~ I )  ‘ J ~ ( f 2 )  
‘I ‘2 

Hence we find 

1 +e-’”‘ 
W ( t ;  J = O )  = W ( t )  = p12L (tot + 1 p 2  

(6.11) 

(6.12) 

(6.13) 

(6.14) 

where 

o s  tl, t2s t 
otherwise 

H ( t ;  t 1 t 2 ) (  
= O  

and L is directly proportional to the ring radius a, but where we have incorporated a 
series of numerical factors and set 

L = & ~ ( 6 7 r ) ” ~ .  

The Fourier transforms over the variables t, t ,  and t2 are readily done in terms of 
known integrals. When these are substituted in (5.13) they will give the fluctuation of 
the random forces gR and 60 in the presence of the entanglement constraint. The final 
results can be written as 

1 -”> (6.15) 
Ncm2 9(3.rr)’12 1 

=6D; 1 - 7 -  ( pl-L 8 (w/2D)’/’ ( 1 + 2 ~ / 9 D ) ~ / ~  22 
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N m 2  9(37~)'" 1 1 - L  ( p12L ' l + ( w / 2 D ) ' 1 2  ( 1 + 2 0 / 9 D ) ~ / ~  1 1  
(6.16) 

We will discuss the meaning of these results in the next section. However, to 
conclude this section we note that the random force fluctuation functions (6.15) and 
(6.16) still depend explicitly on the actual winding numbers m, which we noted in § 2 
depend on the details of fabrication. For an ensemble of loops formed in situ we 
expect the ensemble average m2 of mz to be the same as that calculated for a single 
phantom coil at any time t ,  i.e. 

- 
VI2 = ( m 2 ( t ) ) c c )  = (M,,{C){C\ 

= W( t = 0). (6.17) 

The expression (6.12) that we have been using for W(t) is only strictly correct for long 
times. However, it turns out that we do not make any qualitative error when we use 
it at t = 0, in which case we have from (6.17) that 

- 
m 2  = p12L. (6.18) 

This result will be used in the subsequent discussion. 

7. Discussion 

In the absence of entanglements the random force fluctuation functions governing the 
centre of mass and orientational motion are apart from a geometrical factor, the same 
for each mode and independent of the frequency: 

We have found that in the presence of entanglements the fluctuation functions are 
effected in radically different ways. In particular the long time behaviour of the loop 
which is governed by the w + O  is quite different for the two cases. We have from 
(6.15) and (6.16) together with the ensembled averaged value for m (6.18), that 

D , ( w ) /  = D:[ 1 - 8  
W - 0  

whereas 

(7.2) 

For rotational motion our result suggests that the diffusion constant is greatly 
reduced. Unfortunately the perturbation calculation has virtually no range of applica- 
bility as the diffusion coefficient cannot be negative. In the case of the motion of the 
centre of mass the situation is even more critical because of the presence of the w - ' I 2  

term in the limit w + 0. This implies that the usual Fickian diffusion ( ( R 2 )  - t )  will 
break down completely in the long time limit. In fact only in the case when the loop 
is formed outside of the background matrix and subsequently introduced do we obtain 
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centre-of-mass diffusion with a reduced diffusion coefficient 

(7.4) 

The reason for this is that the coefficient of the U - “ *  term involves the winding number 
m and in this particular case m = O .  Again the validity of this result is very limited. 
In fact the only broad conclusions that we can draw at this stage are that the use of 
perturbation theory to deal with the statistical weight factor (3.9) for entanglements 
is limited and can only be used as a qualitative guide. The reorientational motion, 
though greatly reduced is still diffusional at long times, whereas the centre-of-mass 
motion is radically altered. Whether the loop is eventually localised in our model or 
continues to move in some non-diffusional manner will depend on finding a non- 
perturbative treatment of the statistical weighting factor. It is of some interest to locate 
the origin of the w - ” ~  term in D R ( u ) .  For the specific geometry of a rigid ring the 
tangent vector correlation function is given by 

( r ( s t )  * r (s ’ t ‘ ) )  =cos(s /a )  cos(s’/a) exp(-2Dlt- t’l]+sin(s/a) sin(s’/a) (7 .5)  

from which we can see that there will always be some part of the ring (s, t )  in its 
current position which is parallel to another part (s’, t’) in its previous location, even 
as It - t’ l+ m. When this result is used in the expression (6.3) for the mutual inductance 
formula between the two configurations it is precisely this persistence of the bond 
vector correlation that accounts for the w - ’ ’ ~  term. 

It is not our intention to pursue this much further except to comment briefly that 
if the result (7.2) represents the first term of a perturbation expansion that could be 
resummed to give 

Then the motion of the centre of mass, which is given by 

I 

( R 2 (  2))  = 6 5 5 dt ,  dt, DR ( 21  - t 2 )  

0 

would behave as 

(7.7) 

(R2(t ) )  - ( a /  N)(D”Rt)”’ (7.8) 

due to the w - ’ ’ ~  term in the denominator of (7.7). The dependence ( R 2 ( t ) ) -  t’” is 
very reminescent of a normal diffusion process confined to a random walk path in 
space. This in turn forms the basis of the Doi-Edwards-de Gennes tube model of 
entanglements. It is encouraging that we can tentatively identify this kind of behaviour 
with the persistence of bond vector correlations in our model. In a further publication 
we hope to present a non-perturbation calculation that will lead to the kind of 
resummation that we have speculated on here. We also hope to pursue in detail the 
application of these results to polymer and rigid rod molecules in not only the static 
background we have considered here but also in a dynamic background. 
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Appendix. Derivation of the statistical weighting factor p( {  C}; m )  

We start with the product of topology conserving delta functions 

The delta functions can be parametrised at each time t by the form 

Since we are treating the A(r) as Gaussian random variables then 

p ( { C , } ;  m)=(27rdetM-’)exp 
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